博客
关于我
工程实践_LFFD模型训练过程疑难杂症debug
阅读量:537 次
发布时间:2019-03-08

本文共 2359 字,大约阅读时间需要 7 分钟。

1.MxNet版本的LFFD需要安装CUDA10.1版本和CuDNN

若不满足会出现如下问题:

安装的CUDA版本太低或没有安装:

raceback (most recent call last):  File "configuration_10_320_20L_5scales_v2.py", line 17, in 
import mxnet File "/usr/local/lib/python3.6/dist-packages/mxnet/__init__.py", line 24, in
from .context import Context, current_context, cpu, gpu, cpu_pinned File "/usr/local/lib/python3.6/dist-packages/mxnet/context.py", line 24, in
from .base import classproperty, with_metaclass, _MXClassPropertyMetaClass File "/usr/local/lib/python3.6/dist-packages/mxnet/base.py", line 213, in
_LIB = _load_lib() File "/usr/local/lib/python3.6/dist-packages/mxnet/base.py", line 204, in _load_lib lib = ctypes.CDLL(lib_path[0], ctypes.RTLD_LOCAL) File "/usr/lib/python3.6/ctypes/__init__.py", line 348, in __init__ self._handle = _dlopen(self._name, mode)OSError: libcudart.so.10.1: cannot open shared object file: No such file or directory

没有安装CuDNN:

terminate called after throwing an instance of 'dmlc::Error'  what():  [20:48:36] ../include/mshadow/./stream_gpu-inl.h:173: Check failed: err == CUDNN_STATUS_SUCCESS (4 vs. 0) : CUDNN_STATUS_INTERNAL_ERRORAborted (core dumped)

2.正确使用Python和正确安装MxNet版本

若已经正确安装CUDA和CUDNN,仍然出现:

terminate called after throwing an instance of 'dmlc::Error'  what():  [20:48:36] ../include/mshadow/./stream_gpu-inl.h:173: Check failed: err == CUDNN_STATUS_SUCCESS (4 vs. 0) : CUDNN_STATUS_INTERNAL_ERRORAborted (core dumped)

有两种可能:首先查看MxNet版本是否正确,再在configuration_10_560_25L_8scales_v1.py代码中将如下代码注释:

# add mxnet python path to path env if needmxnet_python_path = '/home/heyonghao/libs/incubator-mxnet/python'sys.path.append(mxnet_python_path)

我们只需要使用我们本地默认的Python就行。

3.正确安装OpenCV

如出现如下问题:

During handling of the above exception, another exception occurred:Traceback (most recent call last):  File "_ctypes/callbacks.c", line 234, in 'calling callback function'  File "/root/work/mxnet/python/mxnet/operator.py", line 1052, in backward_entry    print('Error in CustomOp.backward: %s' % traceback.format_exc())UnicodeEncodeError: 'ascii' codec can't encode characters in position 369-376: ordinal not in range(128)

说明OpenCV版本没有正确安装,删除旧版本之后安装如下版本:

pip install opencv-python==3.4.5.20

4.正确设置batch_size

遇到如下问题,很可能是batch_size设置的太大:

MXNetError: cudaMalloc retry failed: out of memory

可以设置batch_size=16

转载地址:http://gsbiz.baihongyu.com/

你可能感兴趣的文章
NIFI1.21.0_NIFI和hadoop蹦了_200G集群磁盘又满了_Jps看不到进程了_Unable to write in /tmp. Aborting----大数据之Nifi工作笔记0052
查看>>
NIFI1.21.0_Postgresql和Mysql同时指定库_指定多表_全量同步到Mysql数据库以及Hbase数据库中---大数据之Nifi工作笔记0060
查看>>
NIFI1.21.0最新版本安装_连接phoenix_单机版_Https登录_什么都没改换了最新版本的NIFI可以连接了_气人_实现插入数据到Hbase_实际操作---大数据之Nifi工作笔记0050
查看>>
NIFI1.21.0最新版本安装_配置使用HTTP登录_默认是用HTTPS登录的_Https登录需要输入用户名密码_HTTP不需要---大数据之Nifi工作笔记0051
查看>>
NIFI1.21.0通过Postgresql11的CDC逻辑复制槽实现_指定表多表增量同步_增删改数据分发及删除数据实时同步_通过分页解决变更记录过大问题_02----大数据之Nifi工作笔记0054
查看>>
NIFI1.21.0通过Postgresql11的CDC逻辑复制槽实现_指定表多表增量同步_增加修改实时同步_使用JsonPath及自定义Python脚本_03---大数据之Nifi工作笔记0055
查看>>
NIFI1.21.0通过Postgresql11的CDC逻辑复制槽实现_指定表多表增量同步_插入修改删除增量数据实时同步_通过分页解决变更记录过大问题_01----大数据之Nifi工作笔记0053
查看>>
NIFI1.21.0通过Postgresql11的CDC逻辑复制槽实现_指定表或全表增量同步_实现指定整库同步_或指定数据表同步配置_04---大数据之Nifi工作笔记0056
查看>>
NIFI1.23.2_最新版_性能优化通用_技巧积累_使用NIFI表达式过滤表_随时更新---大数据之Nifi工作笔记0063
查看>>
NIFI从MySql中增量同步数据_通过Mysql的binlog功能_实时同步mysql数据_根据binlog实现update数据实时同步_实际操作05---大数据之Nifi工作笔记0044
查看>>
NIFI从MySql中增量同步数据_通过Mysql的binlog功能_实时同步mysql数据_根据binlog实现数据实时delete同步_实际操作04---大数据之Nifi工作笔记0043
查看>>
NIFI从MySql中增量同步数据_通过Mysql的binlog功能_实时同步mysql数据_配置binlog_使用处理器抓取binlog数据_实际操作01---大数据之Nifi工作笔记0040
查看>>
NIFI从MySql中增量同步数据_通过Mysql的binlog功能_实时同步mysql数据_配置数据路由_实现数据插入数据到目标数据库_实际操作03---大数据之Nifi工作笔记0042
查看>>
NIFI从MySql中增量同步数据_通过Mysql的binlog功能_实时同步mysql数据_配置数据路由_生成插入Sql语句_实际操作02---大数据之Nifi工作笔记0041
查看>>
NIFI从MySql中离线读取数据再导入到MySql中_03_来吧用NIFI实现_数据分页获取功能---大数据之Nifi工作笔记0038
查看>>
NIFI从MySql中离线读取数据再导入到MySql中_不带分页处理_01_QueryDatabaseTable获取数据_原0036---大数据之Nifi工作笔记0064
查看>>